login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059085 Number of labeled n-node T_0-hypergraphs without multiple hyperedges (empty hyperedge included). 8
2, 4, 12, 216, 64152, 4294320192, 18446744009290559040, 340282366920938463075992982635439125760, 115792089237316195423570985008687907843742078391854287068422946583140399879680 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A hypergraph is a T_0 hypergraph if for every two distinct nodes there exists a hyperedge containing one but not the other node.

LINKS

Table of n, a(n) for n=0..8.

V. Jovovic, Illustration of initial terms of A059084, A059085

FORMULA

Row sums of A059084.

a(n) = Sum_{k=0..n} stirling1(n, k)*2^(2^k).

E.g.f.: Sum(2^(2^n)*log(1+x)^n/n!, n=0..infinity) = Sum(log(2)^n*(1+x)^(2^n)/n!, n=0..infinity). - Vladeta Jovovic, May 10 2004

EXAMPLE

There are 216 labeled 3-node T_0-hypergraphs without multiple hyperedges (empty hyperedge included): 12 with 2 hyperedges, 44 with 3 hyperedges,67 with 4 hyperedges, 56 with 5 hyperedges, 28 with 6 hyperedges, 8 with 7 hyperedges and 1 with 8 hyperedges.

MAPLE

with(combinat): for n from 0 to 15 do printf(`%d, `, sum(stirling1(n, k)*2^(2^k), k=0..n)) od:

CROSSREFS

Cf. A059084, A059086, A059087-A059089.

Sequence in context: A154734 A291827 A287059 * A030064 A224886 A180500

Adjacent sequences:  A059082 A059083 A059084 * A059086 A059087 A059088

KEYWORD

easy,nonn

AUTHOR

Goran Kilibarda, Vladeta Jovovic, Dec 27 2000

EXTENSIONS

More terms from James A. Sellers, Jan 24 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 5 23:01 EDT 2022. Contains 357261 sequences. (Running on oeis4.)