|
|
A059064
|
|
Card-matching numbers (Dinner-Diner matching numbers).
|
|
0
|
|
|
1, 1, 0, 1, 1, 0, 4, 0, 1, 1, 0, 9, 0, 9, 0, 1, 1, 0, 16, 0, 36, 0, 16, 0, 1, 1, 0, 25, 0, 100, 0, 100, 0, 25, 0, 1, 1, 0, 36, 0, 225, 0, 400, 0, 225, 0, 36, 0, 1, 1, 0, 49, 0, 441, 0, 1225, 0, 1225, 0, 441, 0, 49, 0, 1, 1, 0, 64, 0, 784, 0, 3136, 0, 4900, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
This is a triangle of card matching numbers. A deck has 2 kinds of cards, n of each kind. The deck is shuffled and dealt in to 2 hands each with n cards. A match occurs for every card in the j-th hand of kind j. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..2n). An odd number of matches is impossible, so alternating elements in each row of the triangle are zero. The probability of exactly k matches is T(n,k)/((2n)!/n!^2).
Rows have lengths 1,3,5,7,...
Analogous to A008290 - Zerinvary Lajos, Jun 22 2005
|
|
REFERENCES
|
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
|
|
LINKS
|
Table of n, a(n) for n=0..73.
F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
Barbara H. Margolius, Dinner-Diner Matching Probabilities
B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
Index entries for sequences related to card matching
|
|
FORMULA
|
G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards (2 in this case), k is the number of cards of each kind and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the of coefficient x^j of the rook polynomial.
|
|
EXAMPLE
|
There are 4 ways of matching exactly 2 cards when there are 2 cards of each kind and 2 kinds of card so T(2,2)=4.
|
|
MAPLE
|
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k);
for n from 0 to 10 do seq(coeff(f(t, 2, n), t, m)/n!^2, m=0..2*n); od;
|
|
MATHEMATICA
|
p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[ Table[ Coefficient[f[t, 2, n], t, m]/n!^2, {m, 0, 2n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 25 2013, translated from Maple *)
|
|
CROSSREFS
|
Cf. A008290, A059056-A059071.
Cf. A008290.
Sequence in context: A061309 A263655 A329078 * A321316 A185690 A298248
Adjacent sequences: A059061 A059062 A059063 * A059065 A059066 A059067
|
|
KEYWORD
|
nonn,tabf,nice
|
|
AUTHOR
|
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
|
|
STATUS
|
approved
|
|
|
|