login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059056 Penrice Christmas gift numbers, Card-matching numbers (Dinner-Diner matching numbers): Triangle T(n,k) = number of ways to get k matches for a deck with n cards, 2 of each kind. 22
1, 0, 0, 1, 1, 0, 4, 0, 1, 10, 24, 27, 16, 12, 0, 1, 297, 672, 736, 480, 246, 64, 24, 0, 1, 13756, 30480, 32365, 21760, 10300, 3568, 970, 160, 40, 0, 1, 925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, 320, 60, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

This is a triangle of card matching numbers. A deck has n kinds of cards, 2 of each kind. The deck is shuffled and dealt in to n hands with 2 cards each. A match occurs for every card in the j-th hand of kind j. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..2n). The probability of exactly k matches is T(n,k)/((2n)!/2^n).

Rows are of length 1,3,5,7,... = A005408(n). [Edited by M. F. Hasler, Sep 21 2015]

Analogous to A008290. - Zerinvary Lajos, Jun 10 2005

REFERENCES

F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.

R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.

LINKS

Table of n, a(n) for n=0..48.

F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.

Barbara H. Margolius, Dinner-Diner Matching Probabilities

B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.

S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.

Index entries for sequences related to card matching

FORMULA

G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards, k is the number of cards of each kind (here k is 2) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the j-th coefficient on x of the rook polynomial.

EXAMPLE

There are 4 ways of matching exactly 2 cards when there are 2 different kinds of cards, 2 of each in each of the two decks so T(2,2)=4.

Triangle begins:

1

"0", 0, 1

1, '0', "4", 0, 1

10, 24, 27, '16', "12", 0, 1

297, 672, 736, 480, 246, '64', "24", 0, 1

13756, 30480, 32365, 21760, 10300, 3568, 970, '160', "40", 0, 1

925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, '320', "60", 0, 1

Diagonal " ": T(n,2n-2) = 0, 4, 12, 24, 40, 60, 84, 112, 144, ... equals A046092

Diagonal ' ': T(n,2n-3) = 0, 16, 64, 160, 320, 560, 896, 1344, ... equals A102860

MAPLE

p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k);

for n from 0 to 7 do seq(coeff(f(t, n, 2), t, m)/2^n, m=0..2*n); od;

MATHEMATICA

p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}];

R[x_, n_, k_] := p[x, k]^n;

f[t_, n_, k_] := Sum[ Coefficient[ R[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}];

Table[ Coefficient[ f[t, n, 2]/2^n, t, m], {n, 0, 6}, {m, 0, 2*n}] // Flatten

(* Jean-Fran├žois Alcover, Sep 17 2012, translated from Maple *)

CROSSREFS

Cf. A059056-A059071, A008290.

Sequence in context: A189245 A289222 A121301 * A127153 A178979 A228270

Adjacent sequences:  A059053 A059054 A059055 * A059057 A059058 A059059

KEYWORD

nonn,tabf,nice

AUTHOR

Barbara Haas Margolius (margolius(AT)math.csuohio.edu)

EXTENSIONS

Additional comments from Zerinvary Lajos, Jun 18 2007

Edited by M. F. Hasler, Sep 21 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)