This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059051 Number of ordered T_0-antichains on an unlabeled n-set; labeled T_1-hypergraphs with n (not necessary empty) distinct hyperedges. 2
 2, 3, 2, 4, 99, 190866 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. T_1-hypergraph is a hypergraph which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v. REFERENCES V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6) V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. LINKS FORMULA a(n)=Sum_{m=0..C(n, floor(n/2))} A(m, n), where A(m, n) is number of m-element ordered T_0-antichains on an unlabeled n-set. Cf. A059048. EXAMPLE a(0) = 1 + 1, a(1) = 1 + 2, a(2) = 1 + 1, a(3) = 2 + 2, a(4) = 1 + 13 + 25 + 30 + 30, a(5) = 26 + 354 + 2086 + 8220 + 20580 + 38640 + 60480 + 60480. a(n) = column sums of A059048. CROSSREFS Cf. A059048-A059050, A059052. Sequence in context: A247497 A202714 A022662 * A130069 A120007 A092509 Adjacent sequences:  A059048 A059049 A059050 * A059052 A059053 A059054 KEYWORD hard,more,nonn AUTHOR Vladeta Jovovic, Goran Kilibarda, Dec 19 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.