The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058972 For a rational number p/q let f(p/q) = sum of aliquot divisors of p+q divided by number of divisors of p+q; sequence gives numbers n such that, starting at n/1 and iterating f, an integer is eventually reached. 8
 3, 9, 15, 24, 25, 29, 33, 35, 50, 51, 55, 57, 59, 63, 73, 79, 80, 81, 85, 87, 89, 90, 95, 99, 105, 119, 120, 121, 128, 131, 139, 143, 145, 169, 177, 179, 181, 183, 193, 195, 201, 203, 204, 211, 215, 217, 218, 219, 221, 225, 227, 233, 247, 248, 255, 273, 275, 288 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 P. Schogt, The Wild Number Problem: math or fiction?, arXiv preprint arXiv:1211.6583, 2012. - From N. J. A. Sloane, Jan 03 2013 EXAMPLE f(9/1) = 8/4 = 2, an integer, so 9 is in the sequence; f(10/1) = 1/2 and f(1/2)=1/2, so 10 is not in the sequence. MATHEMATICA f[r_] := If[init == False && IntegerQ[r], r, init = False; p = Numerator[r]; q = Denominator[r]; d = Most[Divisors[p+q]]; Total[d]/(Length[d]+1)]; ok[n_] := IntegerQ[ init = True; FixedPoint[f, n/1]]; ok = False; A058972 = Select[ Range, ok] (* Jean-François Alcover, Dec 21 2011 *) PROG (Haskell) import Data.Ratio ((%), numerator, denominator) a058972 n = a058972_list !! (n-1) a058972_list = map numerator \$ filter ((f [])) [1..] where    f ys q = denominator y == 1 || not (y `elem` ys) && f (y : ys) y             where y = a001065 q' % a000005 q'                   q' = numerator q + denominator q -- Reinhard Zumkeller, Jun 15 2013 CROSSREFS Cf. A058971, A058973. Cf. A001065, A000005. Sequence in context: A246298 A139419 A323031 * A026222 A192720 A099989 Adjacent sequences:  A058969 A058970 A058971 * A058973 A058974 A058975 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane, Jan 14 2001 EXTENSIONS Corrected and extended by Matthew Conroy, Apr 18 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 20:08 EDT 2020. Contains 336201 sequences. (Running on oeis4.)