login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058965 Continued fraction expansion of series-parallel constant. 2
0, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 12, 1, 8, 8, 1, 7, 6, 1, 5, 2, 1, 1, 4, 1, 3, 2, 36, 1, 10, 6, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.

J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.

LINKS

Table of n, a(n) for n=0..33.

O. Golinelli, Asymptotic behavior of two-terminal series-parallel networks.

S. R. Finch, Series-parallel networks

FORMULA

This number, c, is defined by Product_{n=1..inf} (1-c^n)^(-A000669[n]) = 2.

EXAMPLE

.2808326669842003553932...

CROSSREFS

See A058964 for decimal expansion. Cf. A000084, A000669.

Sequence in context: A124921 A076498 A110268 * A226306 A090623 A098094

Adjacent sequences:  A058962 A058963 A058964 * A058966 A058967 A058968

KEYWORD

nonn,cofr

AUTHOR

N. J. A. Sloane, E. M. Rains Jan 14 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 24 12:03 EDT 2014. Contains 240983 sequences.