login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058965 Continued fraction expansion of series-parallel constant. 2
0, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 12, 1, 8, 8, 1, 7, 6, 1, 5, 2, 1, 1, 4, 1, 3, 2, 36, 1, 10, 6, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.

J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.

LINKS

Table of n, a(n) for n=0..33.

S. R. Finch, Series-parallel networks

O. Golinelli, Asymptotic behavior of two-terminal series-parallel networks, arXiv:cond-mat/9707023 [cond-mat.stat-mech], 1997.

FORMULA

This number, c, is defined by Product_{n=1..inf} (1-c^n)^(-A000669[n]) = 2.

EXAMPLE

Constant is 0.2808326669842003553932...

CROSSREFS

See A058964 for decimal expansion. Cf. A000084, A000669.

Sequence in context: A262681 A076498 A110268 * A226306 A090623 A098094

Adjacent sequences:  A058962 A058963 A058964 * A058966 A058967 A058968

KEYWORD

nonn,cofr,more

AUTHOR

N. J. A. Sloane, E. M. Rains, Jan 14 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 02:07 EST 2016. Contains 278902 sequences.