login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of 3-connected claw-free cubic graphs with 2n nodes.
4

%I #17 Jan 17 2018 11:38:06

%S 0,1,60,0,0,19958400,0,0,622452999168000,0,0,258520167388849766400000,

%T 0,0,675289572271869736778268672000000,0,0,

%U 7393367369949286697176489031997849600000000,0,0

%N Number of 3-connected claw-free cubic graphs with 2n nodes.

%D G.-B. Chae (chaegabb(AT)pilot.msu.edu), E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, preprint, 2001.

%H G.-B. Chae, <a href="/A058931/b058931.txt">Table of n, a(n) for n = 1..47</a>

%H G.-B. Chae, <a href="http://myhome.hanafos.com/~1234chae/myindex.htm">Home page</a>

%H G.-B. Chae, <a href="https://doi.org/10.1016/j.disc.2007.09.034">Counting labeled claw-free cubic graphs by connectivity</a>, Discrete Mathematics 308 (2008) 5136-5143.

%H G.-B. Chae, E. M. Palmer and R. W. Robinson, <a href="/A058929/a058929.pdf">Computing the number of Claw-free Cubic Graphs with given Connectivity</a>, Preprint, 2000. (Annotated scanned copy)

%Y See A058930 for many more terms.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Jan 12 2001

%E Added b-file, _N. J. A. Sloane_, Feb 08 2012