login
A058931
Number of 3-connected claw-free cubic graphs with 2n nodes.
4
0, 1, 60, 0, 0, 19958400, 0, 0, 622452999168000, 0, 0, 258520167388849766400000, 0, 0, 675289572271869736778268672000000, 0, 0, 7393367369949286697176489031997849600000000, 0, 0
OFFSET
1,3
REFERENCES
G.-B. Chae (chaegabb(AT)pilot.msu.edu), E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, preprint, 2001.
LINKS
G.-B. Chae, Home page
G.-B. Chae, Counting labeled claw-free cubic graphs by connectivity, Discrete Mathematics 308 (2008) 5136-5143.
G.-B. Chae, E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, Preprint, 2000. (Annotated scanned copy)
CROSSREFS
See A058930 for many more terms.
Sequence in context: A191947 A093403 A087535 * A092914 A022083 A174675
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 12 2001
EXTENSIONS
Added b-file, N. J. A. Sloane, Feb 08 2012
STATUS
approved