login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058927 Numerators of series related to triangular cacti. 2
1, 1, 5, 49, 243, 14641, 371293, 253125, 410338673, 16983563041, 1400846643, 41426511213649, 95367431640625, 617673396283947, 10260628712958602189, 756943935220796320321, 7474615974418932603, 827909024473876953125, 456487940826035155404146917, 510798409623548623605717 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From L. Edson Jeffery, Jan 09 2012: (Start)

The reference [Bergeron, et al.] lists the first few terms of the relevant series as S(x) = x + (1/2)*x^3 + (5/8)*x^5 + (49/48)*x^7 + (243/128)*x^9 + ..., from which the numerators were taken for this sequence and the denominators for A058928. This leads to the following

Conjecture: S(x) = Sum_{n>=0} ((2*n+1)^(n-1)/(n!*2^n))*x^(2*n+1) = (A052750(n)/A000165(n))*x^(2*n+1). Letting D_n be the set of divisors of n! and d_n = max(k in D_n : k | (2*n+1)^(n-1)), then a(n)=A052750(n)/d_n. (End)

The above conjecture is correct and follows from formula given in A034940 for the number of rooted labeled triangular cacti with 2n+1 nodes. - Andrew Howroyd, Aug 30 2018

REFERENCES

F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 307.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..200

FORMULA

G.f.: A(x) satisfies A(x)=exp(x*A(x)^2). - Vladimir Kruchinin, Feb 09 2013

a(n) = numerator(A034940(n)/(2*n+1)!) = numerator((2*n+1)^(n-1)/(2^n*n!)). - Andrew Howroyd, Aug 30 2018

PROG

(PARI) a(n)={numerator((2*n+1)^(n-1)/(2^n*n!))} \\ Andrew Howroyd, Aug 30 2018

CROSSREFS

Cf. A000165, A034940, A052750, A058928.

Sequence in context: A007406 A196326 A273385 * A083224 A201358 A242035

Adjacent sequences:  A058924 A058925 A058926 * A058928 A058929 A058930

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane, Jan 12 2001

EXTENSIONS

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010

Terms a(12) and beyond from Andrew Howroyd, Aug 30 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 14:52 EST 2018. Contains 317352 sequences. (Running on oeis4.)