%I #33 Jul 16 2021 01:39:22
%S 0,2,2,1,1,1,3,2,3,1,2,4,1,1,2,3,1,2,5,1,3,2,3,1,3,1,2,3,2,1,4,1,4,2,
%T 1,1,2,2,1,2,1,1,1,5,2,1,1,1,2,1,1,2,1,2,1,1,3,1,2,2,5,1,1,2,2,2,1,3,
%U 2,1,3,4,2,1,3,1,3,1,1,1,2,2,2,1,2,1,5,3,3,1,1,1,1,1,1,1,3,2,1,2,1,2,2,3,1,1,2,1,3,2,3,2,1,2,2,4,2,6,1,2,2,2,5,2
%N Continued fraction expansion of one of four fixed points (mod 1) of Minkowski's question mark function (specifically, the only positive fixed point (mod 1) less than 1/2).
%C Continued fraction expansions for the other fixed points (mod 1) are {0}, {0,2} and A120221. - Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 10 2006
%D J. H. Conway, On Numbers and Games, Academic Press, New-York, 1976.
%H Nikita Shulga, <a href="/A058914/b058914.txt">Table of n, a(n) for n = 0..5489</a>
%H Dmitry Gayfulin and Nikita Shulga, <a href="https://arxiv.org/abs/1811.10139">Diophantine properties of fixed points of Minkowski question mark function</a>, arXiv:1811.10139 [math.NT], 2018.
%H Nikita Shulga, <a href="/A058914/a058914.txt">5000+ terms</a>
%H Nikita A. Shulga, <a href="http://www.moebiuscontest.ru/files/2020/shulga.pdf">Diophantine properties of fixed points and derivative of iterations of Minkowski question mark function</a>, Lomonosov Moscow State University, Möbius Contest 2020.
%H <a href="/index/Me#MinkowskiQ">Index entries for sequences related to Minkowski's question mark function</a>
%Y Cf. A048819, A120221.
%K cofr,nonn
%O 0,2
%A Francois LAUBIE (laubie(AT)unilim.fr), Jan 10 2001
%E Corrected and extended by _Nikita Shulga_, Nov 21 2018