login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058896 a(n) = 4^n - 4. 7
-3, 0, 12, 60, 252, 1020, 4092, 16380, 65532, 262140, 1048572, 4194300, 16777212, 67108860, 268435452, 1073741820, 4294967292, 17179869180, 68719476732, 274877906940, 1099511627772, 4398046511100, 17592186044412, 70368744177660, 281474976710652, 1125899906842620 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = A000918(n)*A052548(n). - Reinhard Zumkeller, Feb 14 2009

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..500

Mattia Fregola, Elementary Cellular Automata Rule 1 generating OEIS sequence A277799, A058896, A141725, A002450

FORMULA

a(n) = A000302(n) - 4 = 4*a(n-1) + 12 = 4*A024036(n-1) = 12*A002450(n-1).

G.f.: 3*(5*x - 1)/(1 - x)/(1 - 4*x).

MAPLE

seq(4^n-4, n=0..25); # Muniru A Asiru, Mar 09 2018

MATHEMATICA

Array[4^# - 4 &, 26, 0]  (* Michael De Vlieger, Feb 18 2018 *)

PROG

(PARI) { f=1; for (n = 0, 500, write("b058896.txt", n, " ", f-4); f*=4; ) } \\ Harry J. Smith, Jun 23 2009

(GAP) List([0..25], n->4^n-4); # Muniru A Asiru, Mar 09 2018

CROSSREFS

Cf. A000918, A058809.

Sequence in context: A057374 A269035 A268904 * A186748 A222754 A181905

Adjacent sequences:  A058893 A058894 A058895 * A058897 A058898 A058899

KEYWORD

sign,easy

AUTHOR

Henry Bottomley, Jan 08 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 18:19 EST 2019. Contains 329925 sequences. (Running on oeis4.)