OFFSET
0,3
COMMENTS
a(n) is the number of ways to assign 4 different students to n different dorm rooms, each of which can hold at most 3 students. In other words, a(n) is the number of functions f:[4]->[n] with the size of the pre-image set of each element of the codomain at most 3. - Dennis P. Walsh, Mar 21 2013
a(n) are the values of m that yield integer solutions to this family of equations: x = sqrt(m + sqrt(x)), which may also be viewed as an infinitely recursive radical. The real solutions for x at each m = a(n) is n^2, except at n = 1 (m = 0) where x = 0 or 1 is a solution. - Richard R. Forberg, Oct 15 2014
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..2000
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = n*(n-1)*(n^2+n+1) = A000583(n) - n = A002061(n+1) * A002378(n-1) = (n-1) * A027444(n) = -n * A024001(n).
a(n) = 2*A027482(n). - Zerinvary Lajos, Jan 28 2008
a(n) = floor(n^7/(n^3+1)). - Gary Detlefs, Feb 11 2010
a(n)^3 = (a(n)/n)^4 + (a(n)/n)^3. - Vincenzo Librandi, Feb 23 2012
G.f.: 2*x^2*(7+4*x+x^2)/(1-x)^5. - Colin Barker, Apr 23 2012
a(n) = 14*C(n,2) + 36*C(n,3) + 24*C(n,4). - Dennis P. Walsh, Mar 21 2013
Sum_{n>=2} (-1)^n/a(n) = (Pi/3)*sech(Pi*sqrt(3)/2) + 4*log(2)/3 - 1 = 0.06147271494... . - Amiram Eldar, Jul 04 2020
Sum_{n>=2} 1/a(n) = A339605. - R. J. Mathar, Jan 08 2021
E.g.f.: exp(x)*x^2*(7 + 6*x + x^2). - Stefano Spezia, Jul 09 2021
MAPLE
seq(n*(n^3-1), n=0..25) ; # R. J. Mathar, Dec 10 2015
MATHEMATICA
Table[n^4 - n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
PROG
(PARI) { for (n = 0, 2000, write("b058895.txt", n, " ", n^4-n); ) } \\ Harry J. Smith, Jun 23 2009
(Magma) [n^4-n: n in [0..40]]; // Vincenzo Librandi, Feb 23 2012
(Sage) (2*x^2*(7+4*x+x^2)/(1-x)^5).series(x, 37).coefficients(x, sparse=False) # Stefano Spezia, Jul 09 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jan 08 2001
STATUS
approved