login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058853 Primes p such that x^43 = 2 has a solution mod p. 6
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes not of the form 43n + 1. - Charles R Greathouse IV, Aug 22 2011

Differs from A000040 - the prime 173 does not appear.

For case x^31 = 2 the first missing prime is 311 (64th term).

For case x^47 = 2 the first missing prime is 283 (61st term).

For case x^59 = 2 the first missing prime is 709 (127th term).

For case x^61 = 2 the first missing prime is 367 (73rd term).

Complement of A059243 relative to A000040. - Vincenzo Librandi, Sep 14 2012

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000

Index entries for related sequences

FORMULA

a(n) ~ 42/41 * n log n. - Charles R Greathouse IV, Aug 22 2011

MATHEMATICA

ok[p_]:= Reduce[Mod[x^43 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[1000]], ok]  (* Vincenzo Librandi Sep 14 2012 *)

PROG

(PARI) forprime(p=2, 1e3, if(p%43!=1, print1(p", "))) \\ Charles R Greathouse IV, Aug 22 2011

(MAGMA) [p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^43 eq 2}]; // Vincenzo Librandi Sep 14 2012

CROSSREFS

Sequence in context: A077359 A057448 A049551 * A115232 A049569 A100725

Adjacent sequences:  A058850 A058851 A058852 * A058854 A058855 A058856

KEYWORD

nonn,easy

AUTHOR

Patrick De Geest, Dec 15 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 12:35 EST 2018. Contains 299623 sequences. (Running on oeis4.)