OFFSET
1,1
COMMENTS
Primes not of the form 43k + 1. - Charles R Greathouse IV, Aug 22 2011 [Not so! The smallest counterexample is 5419: 5419 = 43*126 + 1, but 2^43 == 2 (mod 5419), so it is here. - Jianing Song, Mar 07 2021]
Differs from A000040 - the prime 173 does not appear.
For case x^31 = 2 the first missing prime is 311 (64th term).
For case x^47 = 2 the first missing prime is 283 (61st term).
For case x^59 = 2 the first missing prime is 709 (127th term).
For case x^61 = 2 the first missing prime is 367 (73rd term).
From Jianing Song, Mar 07 2021: (Start)
It is conjectured that this sequence has density 42/43 ~ 0.976744 over all the primes.
N | # of terms among
| the first N primes
------+--------------------
10^4 | 9758
10^5 | 97681
10^6 | 976798
10^7 | 9767551
10^8 | 97674723
If the conjecture is correct, then a(n) ~ 43/42 * n log n.
In general, let p be a prime, a be an integer that is not a p-th power, then it seems that the density of prime factors of x^p - a over all the primes is 1 - 1/p. This is well-known to be correct for p = 2. (End)
The generalized conjecture above is equivalent to: let P(p,1) be the set of primes congruent to 1 modulo p, P(p,1;a) be the set of primes q congruent to 1 modulo p such that x^p == a (mod q) has a solution, where p is a prime, a is not a p-th power, then the density of P(p,1;a) over P(p,1) is 1/p. - Jianing Song, Mar 09 2021
LINKS
MATHEMATICA
ok[p_]:= Reduce[Mod[x^43 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[1000]], ok] (* Vincenzo Librandi Sep 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^43 eq 2}]; // Vincenzo Librandi Sep 14 2012
(PARI) isA058853(p) = isprime(p) && ispower(Mod(2, p), 43) \\ Jianing Song, Mar 07 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, Dec 15 2000
EXTENSIONS
The old formula "a(n) ~ 42/41 * n log n" based on false observation from Charles R Greathouse IV, Aug 22 2011 removed by Jianing Song, Mar 07 2021
STATUS
approved