login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(0) = 1, a(1) = 9; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(9), i.e., a(n) = 9^n - A027381(n).
0

%I #14 Aug 13 2023 02:47:13

%S 1,9,45,489,4941,47241,443001,4099689,37666701,344373849,3138111873,

%T 28528236009,258893786601,2346337687689,21242736192681,

%U 192165056625657,1737206429739021,15696171011450889,141756044468718681,1279754258848097769,11549782186278421905,104208561077631046089

%N a(0) = 1, a(1) = 9; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(9), i.e., a(n) = 9^n - A027381(n).

%C Dimensions of homogeneous subspaces of shuffle algebra over 9-letter alphabet (see A058766 for 2-letter case).

%D M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

%t a[n_] := 9^n - DivisorSum[n, MoebiusMu[n/#] * 9^# &] / n; a[0] = 1; a[1] = 9; Array[a, 22, 0] (* _Amiram Eldar_, Aug 13 2023 *)

%o (PARI) a(n) = if (n<=1, 9^n, 9^n - sumdiv(n, d, moebius(d)*9^(n/d))/n); \\ _Michel Marcus_, Oct 30 2017

%Y Cf. A001019, A027381, A058766.

%K nonn

%O 0,2

%A Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

%E Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002

%E More terms from _Michel Marcus_, Oct 30 2017