login
a(0) = 1, a(1) = 5; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(5), i.e., a(n) = 5^n - A001692(n).
0

%I #14 Aug 13 2023 02:48:02

%S 1,5,15,85,475,2501,13045,66965,341875,1736125,8789377,44389205,

%T 223796925,1126802885,5667555805,28483073133,143051171875,

%U 718060661765,3602769749125,18069618626645,90599060546905,454130626863845,2275813711825285,11402627696161685,57121117919938125

%N a(0) = 1, a(1) = 5; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(5), i.e., a(n) = 5^n - A001692(n).

%C Dimensions of homogeneous subspaces of shuffle algebra over 5-letter alphabet (see A058766 for 2-letter case).

%D M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

%t a[n_] := 5^n - DivisorSum[n, MoebiusMu[n/#] * 5^# &] / n; a[0] = 1; a[1] = 5; Array[a, 25, 0] (* _Amiram Eldar_, Aug 13 2023 *)

%o (PARI) a(n) = if (n<=1, 5^n, 5^n - sumdiv(n, d, moebius(d)*5^(n/d))/n); \\ _Michel Marcus_, Oct 30 2017

%Y Cf. A000351, A001692, A058766.

%K nonn

%O 0,2

%A Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

%E Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002

%E More terms from _Michel Marcus_, Oct 30 2017