login
Vertically indecomposable lattices on n unlabeled nodes.
2

%I #21 Dec 05 2019 07:08:33

%S 1,1,1,0,1,2,7,27,126,664,3954,26190,190754,1514332,12998035,

%T 119803771,1178740932,12316480222,136060611189,1582930919092,

%U 19328253734491

%N Vertically indecomposable lattices on n unlabeled nodes.

%D J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53.

%H V. Gebhardt and S. Tawn, <a href="http://arxiv.org/abs/1609.08255">Constructing unlabelled lattices</a>, arXiv:1609.08255 [math.CO], 2016.

%H J. Heitzig and J. Reinhold, <a href="http://www-ifm.math.uni-hannover.de/forschung/preprintsifm.html">Counting finite lattices</a>, preprint no. 298, Institut für Mathematik, Universität Hannover, Germany, 1999.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%t A006966 = Cases[Import["https://oeis.org/A006966/b006966.txt", "Table"], {_, _}][[All, 2]];

%t nmax = Length[A006966] - 1;

%t B[x_] = Sum[A006966[[n + 1]] x^n, {n, 0, nmax}];

%t A[x_] = Sum[c[n] x^n, {n, 0, nmax}];

%t sol = CoefficientList[1 + A[x] - 1/(1 - B[x]) + O[x]^nmax, x] == 0 // Solve // First // Rest // Quiet;

%t a[n_] := If[n <= 2, 1, c[n - 2] /. sol];

%t a /@ Range[0, nmax] (* _Jean-François Alcover_, Dec 05 2019 *)

%Y a(n+1) is Inverse INVERT transform of A006966(n+1).

%K nonn,hard,more

%O 0,6

%A _Christian G. Bower_, Dec 28 2000

%E a(19) (computed by Jipsen and Lawless) and a(20) from _Volker Gebhardt_, Sep 28 2016