OFFSET
0,1
COMMENTS
a(n) is divisible by n+3.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
From Colin Barker, Jan 16 2013: (Start)
a(n) = 33 + 173*n + 189*n^2 + 81*n^3 + 15*n^4 + n^5.
a(n) = (n + 3)*(n^4 + 12*n^3 + 45*n^2 + 54*n + 11).
G.f.: 3*(6*x^5 - 37*x^4 + 96*x^3 - 134*x^2 + 98*x + 11) / (x-1)^6.
(End)
E.g.f.: (33 + 459*x + 552*x^2 + 196*x^3 + 25*x^4 + x^5)*exp(x). - G. C. Greubel, Nov 29 2018
MAPLE
seq(coeff(series(3*(6*x^5-37*x^4+96*x^3-134*x^2+98*x+11)/(1-x)^6, x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Nov 30 2018
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {33, 492, 2055, 5898, 13797, 28248}, 30] (* Vincenzo Librandi, Sep 22 2016 *)
PROG
(Magma) [33+173*n+189*n^2+81*n^3+15*n^4+n^5: n in [0..40]]; // Vincenzo Librandi, Sep 22 2016
(PARI) vector(40, n, n--; 33 +173*n +189*n^2 +81*n^3 +15*n^4 +n^5) \\ G. C. Greubel, Nov 29 2018
(Sage) [(33 +173*n +189*n^2 +81*n^3 +15*n^4 +n^5) for n in range(40)] # G. C. Greubel, Nov 29 2018
(GAP) List([0..40], n -> 33+173*n+189*n^2+81*n^3+15*n^4+n^5); # G. C. Greubel, Nov 29 2018
(Python) for n in range(0, 40): print(33+173*n+189*n**2+81*n**3+15*n**4+n**5, end=', ') # Stefano Spezia, Nov 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Christian G. Bower, Dec 02 2000
STATUS
approved