login
Numbers k such that k * (1+i)^k - 1 is a Gaussian prime.
0

%I #10 Aug 14 2022 10:19:34

%S 2,4,8,12,25,30,47,52,61,100,108,142,150,167,198,387,407,648,782,858,

%T 1973,2940,2964,3638,4433,4921,14072,27192,37171,41604,48470,72780

%N Numbers k such that k * (1+i)^k - 1 is a Gaussian prime.

%C Apparently uses a non-standard definition of a Gaussian prime. Let k*(1+i)^k-1 = a+b*i, then k is in this sequence if a+b*i is a Gaussian prime or b=0 and abs(a) is an ordinary prime. - _Sean A. Irvine_, Aug 13 2022

%H <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a>

%t Do[ If[ PrimeQ[ n * (1 + I)^n - 1], Print[n] ], {n, 1, 5000} ]

%K nonn,more

%O 1,1

%A _Robert G. Wilson v_, Jan 02 2001