

A058764


Smallest number x such that cototient(x) = 2^n.


8



2, 4, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Since the cototient of 3*2^n is 2^(n+1), upper bounds are given by A007283(n1).  R. J. Mathar, Oct 13 2008
A058764(n+1) is the number of different walks with n steps in the graph G = ({1,2,3,4}, {{1,2}, {2,3}, {3,4}}).  Aldo González Lorenzo, Feb 27 2012


LINKS

Jud McCranie, Table of n, a(n) for n = 0..45


FORMULA

a(n) = min { x  A051953(x) = 2^n }.
a(n) = (if n>1 then 3 else 4)*2^(n1) = A007283(n1) for n>1. (Conjectured.)  M. F. Hasler, Nov 10 2016


EXAMPLE

a(5) = 48, cototient(48) = 48Phi(48) = 4816 = 32. For n>2, a(n) = 3*2^(n1); largest solutions = 2^(n+1). Prime factors of solutions: 2 and Mersenneprimes were found only.


MATHEMATICA

Function[s, Flatten@ Map[First@ Position[s, #] &, 2^Range[0, Floor@ Log2@ Max@ s]]]@ Table[n  EulerPhi@ n, {n, 10^7}] (* Michael De Vlieger, Dec 17 2016 *)


PROG

(PARI) a(n) = {x = 1; while(x  eulerphi(x) != 2^n, x++); x; } \\ Michel Marcus, Dec 11 2013
(PARI) a(n) = if(n>1, 3, 4)<<(n1) \\ M. F. Hasler, Nov 10 2016


CROSSREFS

Cf. A051953, A053579, A053650.
Cf. A042950.  R. J. Mathar, Jan 30 2009
Cf. A007283.
Sequence in context: A095849 A094783 * A087009 A168263 A162936 A036484
Adjacent sequences: A058761 A058762 A058763 * A058765 A058766 A058767


KEYWORD

nonn,hard


AUTHOR

Labos Elemer, Jan 02 2001


EXTENSIONS

Edited by M. F. Hasler, Nov 10 2016
a(27)a(31) from Jud McCranie, Jul 13 2017


STATUS

approved



