

A058404


Coefficient triangle of polynomials (falling powers) related to Pell number convolutions. Companion triangle is A058405.


4



1, 8, 22, 56, 376, 588, 384, 4576, 17024, 19656, 2624, 48256, 313504, 848096, 801360, 17920, 468608, 4643072, 21685888, 47494272, 38797920, 122368, 4307456, 60136448, 424509952, 1590913920, 2986217856, 2181332160, 835584, 38055936
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The row polynomials are p(k,x) := sum(a(k,m)*x^(km),m=0..k), k=0,1,2,..
The kth convolution of P0(n) := A000129(n+1), n >= 0, (Pell numbers starting with P0(0)=1) with itself is Pk(n) := A054456(n+k,k) = (p(k1,n)*(n+1)*2*P0(n+1) + q(k1,n)*(n+2)*P0(n))/(k!*8^k), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^(km),m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A058405(k,m).
a(k,0)= A057084(k), k >= 0 (conjecture).


LINKS

Table of n, a(n) for n=0..29.
W. Lang, First 7 rows, also for A058405.


FORMULA

Recursion for row polynomials defined in the comments: see A058402.


EXAMPLE

k=2: P2(n)=(8*n+22)*(n+1)*2*P0(n+1)+(8*n+20)*(n+2)*P0(n))/128, cf. A054457.
1; 8,22; 56,376,588; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0)


CROSSREFS

Cf. A000129, A054456, A058405, A054457, A057084, A0584023 (rising powers).
Sequence in context: A124701 A002968 A211530 * A211479 A318034 A326162
Adjacent sequences: A058401 A058402 A058403 * A058405 A058406 A058407


KEYWORD

nonn,tabl


AUTHOR

Wolfdieter Lang, Dec 11 2000


EXTENSIONS

Link and crossreferences added by Wolfdieter Lang, Jul 31 2002


STATUS

approved



