OFFSET
1,2
COMMENTS
T(n,m) is also the number of m-th largest elements in all partitions of n. - Omar E. Pol, Feb 14 2012
It appears that reversed rows converge to A000070. - Omar E. Pol, Mar 10 2012
The row sums give A006128. - Omar E. Pol, Mar 26 2012
T(n,m) is also the number of regions traversed by the m-th column of the section model of partitions with n sections (Cf. A135010, A206437). - Omar E. Pol, Apr 20 2012
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
T(n, m) = Sum_{k=m..n} A008284(n, k).
G.f. for m-th column: Sum_{n>=1} x^(n)/Product_{k=1..n+m-1} (1 - x^k).
T(n, m) = Sum_{k=1..n} A207379(k, m). - Omar E. Pol, Apr 22 2012
EXAMPLE
From Omar E. Pol, Mar 10 2012: (Start)
Triangle begins:
1;
2, 1;
3, 2, 1;
5, 4, 2, 1;
7, 6, 4, 2, 1;
11, 10, 7, 4, 2, 1;
15, 14, 11, 7, 4, 2, 1;
22, 21, 17, 12, 7, 4, 2, 1;
30, 29, 25, 18, 12, 7, 4, 2, 1;
42, 41, 36, 28, 19, 12, 7, 4, 2, 1;
56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1;
77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1;
(End)
MAPLE
b:= proc(n, k) option remember;
`if`(n=0, 1, `if`(k<1, 0, add(b(n-j*k, k-1), j=0..n/k)))
end:
T:= (n, m)-> b(n, n) -b(n, m-1):
seq (seq (T(n, m), m=1..n), n=1..15); # Alois P. Heinz, Apr 20 2012
MATHEMATICA
t[n_, m_] := Sum[ IntegerPartitions[n, {k}] // Length, {k, m, n}]; Table[t[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Dec 11 2000
STATUS
approved