%I #23 Jun 03 2019 06:45:17
%S 1,3,6,13,22,42,66,112,172,270,397,602,858,1245,1748,2464,3381,4671,
%T 6302,8537,11372,15147,19914,26201,34057,44250,56986,73277,93497,
%U 119161,150809,190590,239496,300388,374912,467135,579394,717384,884813
%N Row sums of partition triangle A026820.
%F a(n) = Sum_{k=1..n} A026820(n, k).
%F a(n) = A278427(2n,n). - _John P. McSorley_, Nov 28 2016
%p seq(add(combinat:-numbpart(n,k),k=0..n),n=1..39); # _Peter Luschny_, Aug 03 2015
%t T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k] ]];
%t a[n_] := Sum[T[n, k], {k, 1, n}];
%t Array[a,39] (* _Jean-François Alcover_, Jun 03 2019, after _Alois P. Heinz_ in A026820 *)
%o (PARI) a(n)=if(n<1,0,polcoeff(sum(k=1,n,1/prod(i=1,k,(1-x^i)),x*O(x^n)),n))
%Y Cf. A026820, A046682.
%K nonn
%O 1,2
%A _Wolfdieter Lang_, Dec 11 2000
%E More terms from _Benoit Cloitre_, Apr 21 2003