login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058383 Primes of form 1+(2^a)*(3^b), a>0, b>0. 15
7, 13, 19, 37, 73, 97, 109, 163, 193, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, 1179649, 1492993 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Prime numbers n such that cos(2*Pi/n) is an algebraic number of a 3-smooth degree, but not a 2-smooth degree. - Artur Jasinski, Dec 13 2006

From Antonio M. Oller-Marcén, Sep 24 2009: (Start)

In this case gcd(a,b) is a power of 2.

A regular polygon of n sides is constructible by paper folding if and only if n=2^r3^sp_1...p_t with p_i being distinct primes of this kind. (End)

Primes in A005109 but not in A092506. - R. J. Mathar, Sep 28 2012

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

FORMULA

1+A033845(n) is prime

MATHEMATICA

Do[If[Take[FactorInteger[EulerPhi[2n + 1]][[ -1]], 1] == {3} && PrimeQ[2n + 1], Print[2n + 1]], {n, 1, 10000}] - Artur Jasinski, Dec 13 2006

mx = 1500000; s = Sort@ Flatten@ Table[1 + 2^j*3^k, {j, Log[2, mx]}, {k, Log[3, mx/2^j]}]; Select[s, PrimeQ] (* Robert G. Wilson v, Sep 28 2012 *)

CROSSREFS

Cf. A033845, A000423, A125866.

Sequence in context: A040034 A176229 A110074 * A005471 A040096 A181938

Adjacent sequences:  A058380 A058381 A058382 * A058384 A058385 A058386

KEYWORD

nonn

AUTHOR

Labos Elemer, Dec 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 24 06:31 EDT 2014. Contains 248502 sequences.