login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058383 Primes of form 1+(2^a)*(3^b), a>0, b>0. 17
7, 13, 19, 37, 73, 97, 109, 163, 193, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, 1179649, 1492993 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Prime numbers n such that cos(2*Pi/n) is an algebraic number of a 3-smooth degree, but not a 2-smooth degree. - Artur Jasinski, Dec 13 2006

From Antonio M. Oller-Marcén, Sep 24 2009: (Start)

In this case gcd(a,b) is a power of 2.

A regular polygon of n sides is constructible by paper folding if and only if n=2^r3^sp_1...p_t with p_i being distinct primes of this kind. (End)

Primes in A005109 but not in A092506. - R. J. Mathar, Sep 28 2012

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

FORMULA

1+A033845(n) is prime

MATHEMATICA

Do[If[Take[FactorInteger[EulerPhi[2n + 1]][[ -1]], 1] == {3} && PrimeQ[2n + 1], Print[2n + 1]], {n, 1, 10000}] - Artur Jasinski, Dec 13 2006

mx = 1500000; s = Sort@ Flatten@ Table[1 + 2^j*3^k, {j, Log[2, mx]}, {k, Log[3, mx/2^j]}]; Select[s, PrimeQ] (* Robert G. Wilson v, Sep 28 2012 *)

CROSSREFS

Cf. A033845, A000423, A125866.

Sequence in context: A176229 A266268 A110074 * A005471 A249381 A040096

Adjacent sequences:  A058380 A058381 A058382 * A058384 A058385 A058386

KEYWORD

nonn

AUTHOR

Labos Elemer, Dec 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 09:37 EST 2016. Contains 278999 sequences.