login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058373 a(n) = (1/6)*(2*n - 3)*(n + 2)*(n + 1). 8
0, 0, -1, -1, 2, 10, 25, 49, 84, 132, 195, 275, 374, 494, 637, 805, 1000, 1224, 1479, 1767, 2090, 2450, 2849, 3289, 3772, 4300, 4875, 5499, 6174, 6902, 7685, 8525, 9424, 10384, 11407, 12495, 13650, 14874, 16169, 17537, 18980, 20500, 22099 (list; graph; refs; listen; history; text; internal format)
OFFSET

-2,5

COMMENTS

For n>=0, real parts of sum_(k=0)^n (k+i)^2, where i=sqrt(-1). [Bruno Berselli, Jan 24 2014]

LINKS

Michael De Vlieger, Table of n, a(n) for n = -2..10000

Francesco Toppan, Z_2 X Z_2-graded parastatistics in multiparticle quantum Hamiltonians, arXiv:2008.11554 [hep-th], 2020.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 2*C(n+2,3) - C(n+2,2). - Zerinvary Lajos, Nov 25 2006

MAPLE

seq((2*n-3)*(n+2)*(n+1)/6, n=-2..40);

MATHEMATICA

s=0; lst={0, s}; Do[s+=n^2-1; AppendTo[lst, s], {n, 0, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *)

Table[((2n-3)(n+2)(n+1))/6, {n, -2, 40}] (* Harvey P. Dale, Apr 21 2019 *)

CROSSREFS

Cf. A236377: real part of sum_(k=0)^n (k + i^k)^2, i=sqrt(-1). [Bruno Berselli, Jan 25 2014]

Sequence in context: A345695 A336958 A305600 * A167386 A027719 A254709

Adjacent sequences:  A058370 A058371 A058372 * A058374 A058375 A058376

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Dec 18 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)