

A058213


This is a triangle arrangement of solutions of phi(x)=2^n (n>=0), where phi=A000010 is Euler's totient function. Each row corresponds to a particular n and its length is n+2 for 0<=n<=31, 32 for n>=32. (This assumes that there are only 5 Fermat primes.).


5



1, 2, 3, 4, 6, 5, 8, 10, 12, 15, 16, 20, 24, 30, 17, 32, 34, 40, 48, 60, 51, 64, 68, 80, 96, 102, 120, 85, 128, 136, 160, 170, 192, 204, 240, 255, 256, 272, 320, 340, 384, 408, 480, 510, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 771, 1024, 1028, 1088
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

phi(x) is a power of 2 if and only if x is a power of 2 multiplied by a product of distinct Fermat primes. So if, as is conjectured, there are only 5 Fermat primes, then there are only 32 possibilities for the odd part of x, namely the divisors of 2^321, given in A004729.
The same numbers, in increasing order, are given in A003401.
The first entry in row n is the nth divisor of 2^321 for 0<=n<=31 (A004729) and is 2^(n+1) for n>=32. The last entry in row n is given in A058215.


LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000


EXAMPLE

Triangle begins:
{1,2},
{3,4,6},
{5,8,10,12},
{15,16,20,24,30},
{17,32,34,40,48,60},
{51,64,68,80,96,102,120},
{85,128,136,160,170,192,204,240},
...


MATHEMATICA

phiinv[ n_, pl_ ] := Module[ {i, p, e, pe, val}, If[ pl=={}, Return[ If[ n==1, {1}, {} ] ] ]; val={}; p=Last[ pl ]; For[ e=0; pe=1, e==0Mod[ n, (p1)pe/p ]==0, e++; pe*=p, val=Join[ val, pe*phiinv[ If[ e==0, n, n*p/pe/(p1) ], Drop[ pl, 1 ] ] ] ]; Sort[ val ] ]; phiinv[ n_ ] := phiinv[ n, Select[ 1+Divisors[ n ], PrimeQ ] ]; Join@@(phiinv[ 2^# ]&/@Range[ 0, 10 ]) (* phiinv[ n, pl ] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[ n ] = list of x with phi(x)=n *)


CROSSREFS

Cf. A000010, A001317, A003401, A004729, A019434, A045544, A047999, A053576, A054432, A058214, A058215.
Sequence in context: A080738 A032447 A224531 * A080997 A151942 A054582
Adjacent sequences: A058210 A058211 A058212 * A058214 A058215 A058216


KEYWORD

nonn,tabf


AUTHOR

Labos Elemer, Nov 30 2000


EXTENSIONS

Edited by Dean Hickerson, Jan 25 2002


STATUS

approved



