login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058161 Number of labeled cyclic groups with a fixed identity. 6
1, 1, 1, 3, 6, 60, 120, 1260, 6720, 90720, 362880, 9979200, 39916800, 1037836800, 10897286400, 163459296000, 1307674368000, 59281238016000, 355687428096000, 15205637551104000, 202741834014720000, 5109094217170944000, 51090942171709440000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Degree of Lagrange resolvent of polynomial of n-th degree. Equals degree of symmetric group of order n divided by order of metacyclic group of order n. - Artur Jasinski, Jan 22 2008

REFERENCES

J. L. Lagrange, Oeuvres, Vol. III Paris 1869.

LINKS

Table of n, a(n) for n=1..23.

Index entries for sequences related to groups

FORMULA

a(n) = (n-1)!/phi(n).

a(n) = n!/A002618(n) - Artur Jasinski, Jan 22 2008

EXAMPLE

a(4)=3 because we have: <(1234)> = <(1432)>,  <(1243)> = <(1342)>,  <(1324)> = <(1423)>. - Geoffrey Critzer, Sep 07 2015

MATHEMATICA

Table[n!/(n EulerPhi[n]), {n, 1, 20}] (* Artur Jasinski, Jan 22 2008 *)

CROSSREFS

a(n) = A000142(n-1)/A000010(n) = A034381(n)/n.

Cf. A058162, A058163.

Cf. A002618.

Sequence in context: A067610 A067609 A012473 * A012877 A103066 A145887

Adjacent sequences:  A058158 A058159 A058160 * A058162 A058163 A058164

KEYWORD

nonn

AUTHOR

Christian G. Bower, Nov 14 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 22:16 EST 2020. Contains 331166 sequences. (Running on oeis4.)