%I #24 May 29 2018 07:35:47
%S 1,0,1,2,2,-2,-1,0,-4,-2,5,2,0,8,2,-8,-3,-2,-14,-6,14,6,4,24,12,-24,
%T -11,-4,-40,-16,38,16,5,62,24,-60,-24,-10,-94,-40,91,38,18,144,62,
%U -136,-57,-24,-214,-88,201,82,30,308,122,-288,-117,-48,-440,-180,410,168,74,624,262,-578,-238,-96,-874,-356,804
%N McKay-Thompson series of class 10E for Monster.
%H G. C. Greubel, <a href="/A058101/b058101.txt">Table of n, a(n) for n = -1..1000</a>
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%e T10E = 1/q + q + 2*q^2 + 2*q^3 - 2*q^4 - q^5 - 4*q^7 - 2*q^8 + 5*q^9 + 2*q^10 + ...
%t eta[q_]:= q^(1/24)*QPochhammer[q]; A058101:= CoefficientList[Series[ q*(3 + (eta[q]^3*eta[q^5])/(eta[q^2]*eta[q^10]^3)), {q, 0, 60}], q]; Table[A058101[[n]], {n, 1, 50}] (* _G. C. Greubel_, May 28 2018 *)
%o (PARI) q='q+O('q^60); {h =(eta(q)^3*eta(q^5)/(eta(q^2)*eta(q^10)^3))/q}; Vec(3 + h) \\ _G. C. Greubel_,May 28 2018
%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
%Y Cf. A138516 (same sequence except for n=0).
%K sign
%O -1,4
%A _N. J. A. Sloane_, Nov 27 2000
%E More terms from _Michel Marcus_, Feb 18 2014