OFFSET
0,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..422
Alexander Postnikov, Papers.
A. Postnikov and R. P. Stanley, Deformations of Coxeter hyperplane arrangements, J. Combin. Theory, Ser. A, 91 (2000), 544-597. (Section 10.2.)
FORMULA
a(n) = (1/2^n) * Sum_{k=0..n} binomial(n,k) * (n + 1 - 2*k)^(n-1).
From Paul D. Hanna, Mar 29 2008: (Start)
E.g.f. satisfies A(x) = exp( x*[A(x) + 1/A(x)]/2 ).
E.g.f. A(x) equals the inverse function of 2*x*log(x)/(1 + x^2).
Let r = radius of convergence of A(x), then r = 0.6627434193491815809747420971092529070562335491150224... and A(r) = 3.31905014223729720342271370055697247448941708369151595... where A(r) and r satisfy A(r) = exp( (A(r)^2 + 1)/(A(r)^2 - 1) ) and r = 2*A(r)/(A(r)^2 - 1). (End)
E.g.f. A(x)=exp(B(x)), B(x) satisfies B(x)=x*cosh(B(x)). [Vladimir Kruchinin, Apr 19 2011]
a(n) ~ (1-(-1)^n*s^2)/s * n^(n-1) * ((1-s^2)/(2*s))^n / exp(n), where s = 0.3012910191606573456... is the root of the equation (1+s^2) = (s^2-1)*log(s), r = 2*s/(1-s^2). - Vaclav Kotesovec, Jan 08 2014
E.g.f. satisfies A(-x) = 1/A(x). - Alexander Burstein, Oct 26 2021
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 4x^3/3! + 13x^4/4! + 96x^5/5! +...
MAPLE
a := n -> 2^(-n)*add(binomial(n, k)*(n+1-2*k)^(n-1), k=0..n);
MATHEMATICA
a[n_] := Sum[((n-2k+1)^(n-1)*n!) / (k!*(n-k)!), {k, 0, n}] / 2^n; a[1] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 14 2011, after Maple *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=exp(x*(A+1/(A +x*O(x^n)))/2)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Mar 29 2008
(PARI) {a(n) = sum(k=0, n, binomial(n, k)*(n+1-2*k)^(n-1))/2^n} \\ Seiichi Manyama, Sep 27 2020
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Alex Postnikov (apost(AT)math.mit.edu), Nov 13 2000
EXTENSIONS
Updated URL and author's e-mail address - R. J. Mathar, May 23 2010
STATUS
approved