OFFSET
0,2
COMMENTS
The row polynomials are p(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of F0(n) := A000045(n+1) n >= 0, (Fibonacci starting with F0(0)=1) with itself is Fk(n) := A037027(n+k,k) = (p(k-1,n)*(n+1)*F0(n+1) + q(k-1,n)*(n+2)*F0(n))/(k!*5^k)), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A057280).
EXAMPLE
k=2: F2(n)=((16+5*n)*(n+1)*F0(n+1)+(17+5*n)*(n+2)*F0(n))/50, cf. A001628.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Sep 13 2000
STATUS
approved