%I #30 Feb 02 2020 21:29:53
%S 1,1,1,5,35,1411,1130531,12198455835,2697818331680661,
%T 15224734061438247321497,2750892211809150446995735533513,
%U 19464657391668924966791023043937578299025
%N Number of quasigroups of order n.
%H A. Hulpke, Petteri Kaski and Patric R. J. Östergård, <a href="http://dx.doi.org/10.1090/S0025-5718-2010-02420-2">The number of Latin squares of order 11</a>, Math. Comp. 80 (2011) 1197-1219.
%H Brendan D. McKay, A. Meynert and W. Myrvold, <a href="http://users.cecs.anu.edu.au/~bdm/papers/ls_final.pdf">Small Latin Squares, Quasigroups and Loops</a>, J. Combin. Designs 15 (2007), no. 2, 98-119.
%H D. S. Stones, <a href="https://doi.org/10.1016/j.disc.2010.06.027">The parity of the number of quasigroups</a>, Discr. Math., 310 (2010), 3033-3039. [From _N. J. A. Sloane_, Sep 25 2010]
%H <a href="/index/Qua#quasigroups">Index entries for sequences related to quasigroups</a>
%Y Cf. A002860, A057992, A057993, A057994, A057771, A057996.
%K nonn,more
%O 0,4
%A _Christian G. Bower_, Nov 01 2000
%E More terms (from the McKay-Meynert-Myrvold article) from _Richard Bean_, Feb 17 2004
%E a(11) from Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009