login
A057828
Number of perfect squares, k^2, where k^2 <= n and gcd(k,n) = 1.
3
1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 1, 4, 2, 3, 2, 4, 1, 4, 3, 4, 3, 5, 1, 5, 3, 4, 3, 4, 2, 6, 3, 4, 2, 6, 2, 6, 3, 3, 3, 6, 2, 6, 3, 5, 4, 7, 3, 6, 3, 5, 4, 7, 2, 7, 4, 4, 4, 7, 3, 8, 4, 6, 2, 8, 3, 8, 4, 5, 4, 7, 3, 8, 3, 6, 5, 9, 2, 8, 5, 6, 5, 9, 2, 8, 5, 6, 5, 8, 3, 9, 4, 6, 4, 10, 3, 10, 5
OFFSET
1,5
COMMENTS
Number of square totatives of n, i.e., number of perfect squares less than n that are coprime to n. - Michael De Vlieger, Dec 11 2017
LINKS
Eric Weisstein's World of Mathematics, Totative.
EXAMPLE
Only 2 squares, 1 and 9, are <= 14 and relatively prime to 14. So a(14) = 2.
MATHEMATICA
Table[Count[Range[Sqrt@ n]^2, _?(CoprimeQ[#, n] &)], {n, 104}]
PROG
(Haskell)
a057828 x = length $ filter ((== 1) . (gcd x)) $
takeWhile (<= x) $ tail a000290_list
-- Reinhard Zumkeller, Jul 22 2012
CROSSREFS
Sequence in context: A322873 A332897 A026904 * A082498 A112223 A324810
KEYWORD
nonn,look
AUTHOR
Leroy Quet, Nov 08 2000
STATUS
approved