The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057752 Difference between nearest integer to Li(10^n) and pi(10^n), where Li(x) = integral of log(x) and pi(10^n) = number of primes <= 10^n (A006880). 10
2, 5, 10, 17, 38, 130, 339, 754, 1701, 3104, 11588, 38263, 108971, 314890, 1052619, 3214632, 7956589, 21949555, 99877775, 222744644, 597394254, 1932355208, 7250186216, 17146907278, 55160980939, 155891678121, 508666658006, 1427745660374, 4551193622464 (list; graph; refs; listen; history; text; internal format)



On his prime pages C. K. Caldwell remarks: "However in 1914 Littlewood proved that pi(x)-Li(x) assumes both positive and negative values infinitely often". - Frank Ellermann, May 31 2003


John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1995, page 146.

Marcus du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see table on p. 90.


Table of n, a(n) for n=1..29.

Chris K. Caldwell, How many primes are there, table, Values of pi(x).

Chris K. Caldwell, How many primes are there, table, Approximations to pi(x).

Xavier Gourdon and Pascal Sebah, Counting the primes

Andrew Granville, Harald Cramer and the Distribution of Prime Numbers

Anatolii A. Karatsuba and Ekatherina A. Karatsuba, The "problem of remainders" in theoretical physics: "physical zeta" function, 6th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics, 14-23 September 2010, Belgrade, Serbia. [From Internet Archive Wayback Machine]

Tomás Oliveira e Silva, Tables of values of pi(x) and of pi2(x)

Y. Saouter and P. Demichel, A sharp region where pi(x)-li(x) is positive, Math. Comp. 79 (272) (2010) 2395-2405. [From R. J. Mathar, Oct 08 2010]

Munibah Tahir, A new bound for the smallest x with pi(x) > li(x) (2010).

Eric Weisstein's World of Mathematics, Prime Counting Function

Wikipedia, Prime number theorem


Table[Round[LogIntegral[10^n] - PrimePi[10^n]], {n, 1, 13}]


(PARI) A057752=vector(#A006880, i, round(-eint1(-log(10^i))-A006880[i])) \\ M. F. Hasler, Feb 26 2008


from sympy import N, li, primepi, floor

def round(n):

    return int(floor(n+0.5))

def A057752(n):

    return round(N(li(10**n), 10*n)) - primepi(10**n) # Chai Wah Wu, Apr 30 2018


Cf. A006880, A052435, A057794.

Sequence in context: A018315 A146220 A054964 * A342604 A173057 A173112

Adjacent sequences:  A057749 A057750 A057751 * A057753 A057754 A057755




Robert G. Wilson v, Oct 30 2000


More terms from Frank Ellermann, May 31 2003

The value of a(23) is not known at present, I believe. - N. J. A. Sloane, Mar 17 2008

Name corrected and extended for last two terms a(23) and a(24), with Pi(10^n) for n=23 and 24 from A006880, by Vladimir Pletser, Mar 10 2013

a(25)-a(27) added, using data from A006880, by Chai Wah Wu, Apr 30 2018

a(28) added, using data from A006880, by Eduard Roure Perdices, Apr 14 2021

a(29) added, using data from A006880, by Reza K Ghazi, May 10 2022



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 7 08:31 EDT 2022. Contains 357270 sequences. (Running on oeis4.)