login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057719 Prime factors of numbers in A006521 (numbers n such that n divides 2^n+1). 6
3, 19, 163, 571, 1459, 8803, 9137, 17497, 41113, 52489, 78787, 87211, 135433, 139483, 144667, 164617, 174763, 196579, 274081, 370009, 370387, 478243, 760267, 941489, 944803, 1041619, 1220347, 1236787, 1319323, 1465129, 1663579, 1994659 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A prime p is in this sequence iff all prime divisors of ord_p(2)/2 are in this sequence, where ord_p(2) is the order of 2 modulo p. - Max Alekseyev, Jul 30 2006

LINKS

Joerg Arndt, Table of n, a(n) for n = 1..220 (terms up to 10^9, terms for n=1..100 from T. D. Noe)

Alexander Kalmynin, On Novák numbers, arXiv:1611.00417 [math.NT], 2016. See Chapter 4 p. 7 Novák primes.

C. Smyth, The terms in Lucas Sequences divisible by their indices, JIS 13 (2010) #10.2.4.

EXAMPLE

2^171+1 = 0 (mod 171), 171=3^3*19 2^13203+1 = 0 (mod 13203), 13203=3^4*163.

MATHEMATICA

S = {2}; Reap[For[p = 3, p < 2 10^6, p = NextPrime[p], f = FactorInteger[ MultiplicativeOrder[2, p]]; If[f[[1, 1]] != 2 || f[[1, 2]] != 1, Continue[]]; f = f[[All, 1]]; If[Length[Intersection[S, f]] == Length[f], S = Union[S, {p}]; Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Nov 11 2018, from PARI *)

PROG

(PARI) { A057719() = local(S, f); S=Set([2]); forprime(p=3, 10^7, f=factorint(znorder(Mod(2, p))); if(f[1, 1]!=2||f[1, 2]!=1, next); f=f[, 1]; if(length(setintersect(S, Set(f)))==length(f), S=setunion(S, [p]); print1(p, ", "))) }

CROSSREFS

Cf. A006521, A066364.

Cf. A136474, A136473.

Sequence in context: A301921 A054765 A232691 * A289258 A199559 A136474

Adjacent sequences:  A057716 A057717 A057718 * A057720 A057721 A057722

KEYWORD

nonn

AUTHOR

Ignacio Larrosa Cañestro, Oct 26 2000

EXTENSIONS

Edited by Max Alekseyev, Jul 30 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 08:39 EDT 2020. Contains 337442 sequences. (Running on oeis4.)