This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057704 Primorial - 1 prime indices: integers n such that the n-th primorial minus 1 is prime. 17

%I

%S 2,3,5,6,13,24,66,68,167,287,310,352,564,590,620,849,1552,1849,67132,

%T 85586

%N Primorial - 1 prime indices: integers n such that the n-th primorial minus 1 is prime.

%C There are two versions of "primorial": this is using the definition in A002110. - _Robert Israel_, Dec 30 2014

%C As of 28 February 2012, the largest known primorial prime is A002110(85586) - 1 with 476311 digits, found by the PrimeGrid project (see link). - _Dmitry Kamenetsky_, Aug 11 2015

%H Chris K. Caldwell, <a href="http://primes.utm.edu/primes/search.php?Description=%5E[[:digit:]]{1,}%23-1&amp;Style=HTML">Prime Pages: Database Search</a>

%H Chris K. Caldwell, <a href="http://primes.utm.edu/top20/page.php?id=5">The top 20: primorial primes</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimorialPrime.html">Primorial Prime</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Primorial_prime">Primorial prime</a>

%F a(n) = A000720(A006794(n)).

%F a(n) = primepi(A006794(n)).

%e The 6th primorial is A002110(6) = 2*3*5*7*11*13 = 30030, and 30030 - 1 = 30029 is a prime, so 6 is in the sequence.

%p P:= 1:

%p p:= 1:

%p count:= 0:

%p for n from 1 to 1000 do

%p p:= nextprime(p);

%p P:= P*p;

%p if isprime(P-1) then

%p count:= count+1;

%p A[count]:= n;

%p fi

%p od:

%p seq(A[i],i=1..count); # _Robert Israel_, Dec 25 2014

%t a057704[n_] :=

%t Flatten@Position[

%t Rest[FoldList[Times, 1, Prime[Range[n]]]] - 1, _Integer?PrimeQ]; a057704[500] (* _Michael De Vlieger_, Dec 25 2014 *)

%o (PARI) lista(nn) = {s = 1; for(k=1, nn, s *= prime(k); if(ispseudoprime(s - 1), print1(k, ", ")); ); } \\ _Altug Alkan_, Dec 08 2015

%o (PARI) is(n) = ispseudoprime(prod(k=1, n, prime(k)) - 1); \\ _Altug Alkan_, Dec 08 2015

%Y Cf. A006794 (Primorial -1 primes: Primes p such that -1 + product of primes up to p is prime).

%Y Cf. A057705, A014545, A005234, A002110, A057706.

%K nonn,more

%O 1,1

%A _Labos Elemer_, Oct 24 2000

%E Corrected by Holzer Werner, Nov 28 2002

%E a(19)-a(20) from _Eric W. Weisstein_, Dec 08 2015 (Mark Rodenkirch confirms based on saved log files that all p < 700,000 have been tested)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.