login
A057689
Maximal term in trajectory of P under the 'Px+1' map, where P = n-th prime, or -1 if no such term exists.
10
16, 66, 50, 672, 20372, 494, 36918, 1404, 12210, 4248, 5070, 1682, 1850, 2210, 35882, 102720, 94484303672, 30084, 178992, 5330, 246560, 6890, 294253314, 8416400, 515202, 134004, 2810784, 2810883506682183650, 377198408, 320168
OFFSET
2,1
COMMENTS
See A057684 for definition.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 2..10001 (terms 2..1000 from T. D. Noe)
EXAMPLE
For n=3, P=7: trajectory of 7 is 7, 50, 25, 5, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, ..., which has maximal term 50, cycle length 4 and there are 4 terms before it enters the cycle.
MATHEMATICA
Px1[p_, n_]:=Catch[For[i=1, i<PrimePi[p], i++, If[Divisible[n, Prime[i]], Throw[n/Prime[i]]]]; p*n+1];
With[{nmax=50}, Table[Max[NestWhileList[Px1[Prime[n], #]&, Prime[n], UnsameQ, All]], {n, 2, nmax}]] (* Paolo Xausa, Dec 11 2023 *)
PROG
(Python)
from sympy import prime, primerange
def a(n):
P = prime(n)
x, plst, seen = P, list(primerange(2, P)), set()
while x > 1 and x not in seen:
seen.add(x)
x = next((x//p for p in plst if x%p == 0), P*x+1)
return max(seen)
print([a(n) for n in range(2, 32)]) # Michael S. Branicky, Dec 11 2023
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Oct 20 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2000
STATUS
approved