login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057675 1 - (5/6)*n + (5/2)*n^2 + (10/3)*n^3 + n^4. 1
1, 7, 52, 192, 507, 1101, 2102, 3662, 5957, 9187, 13576, 19372, 26847, 36297, 48042, 62426, 79817, 100607, 125212, 154072, 187651, 226437, 270942, 321702, 379277, 444251, 517232, 598852, 689767, 790657, 902226, 1025202, 1160337 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(0)=1, a(1)=7, a(2)=52, a(3)=192, a(4)=507, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Apr 28 2016

G.f.: (1+2*x+27x^2-8*x^3+2*x^4)/(1-x)^5. - Vincenzo Librandi, Apr 30 2016

MATHEMATICA

Table[1-(5n)/6+(5n^2)/2+(10n^3)/3+n^4, {n, 0, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 7, 52, 192, 507}, 40] (* Harvey P. Dale, Apr 28 2016 *)

CoefficientList[Series[(1 + 2 x + 27 x^2 - 8 x^3 + 2 x^4)/(1 - x)^5, {x, 0, 33}], x] (* Vincenzo Librandi, Apr 30 2016 *)

PROG

(MAGMA) [1-(5/6)*n+(5/2)*n^2+(10/3)*n^3+n^4: n in [0..50]]; // Vincenzo Librandi, Apr 30 2016

(PARI) a(n)=n^4 + 10/3*n^3 + 5/2*n^2 - 5/6*n + 1 \\ Charles R Greathouse IV, Apr 30 2016

CROSSREFS

Sequence in context: A198007 A156751 A138849 * A206809 A027542 A254946

Adjacent sequences:  A057672 A057673 A057674 * A057676 A057677 A057678

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 19 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 15 19:06 EST 2019. Contains 319171 sequences. (Running on oeis4.)