login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057670 a(n) = Sum_{k|n} lcm(k, n/k). 3
1, 4, 6, 10, 10, 24, 14, 24, 21, 40, 22, 60, 26, 56, 60, 52, 34, 84, 38, 100, 84, 88, 46, 144, 55, 104, 72, 140, 58, 240, 62, 112, 132, 136, 140, 210, 74, 152, 156, 240, 82, 336, 86, 220, 210, 184, 94, 312, 105, 220, 204, 260, 106, 288, 220, 336, 228, 232, 118, 600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Multiplicative with a(p) = 2*p, a(p^k) = (2*p^(k+1) - p^ceiling((k+1)/2) - p^floor((k+1)/2)) / (p-1). a(n) is odd iff n is an odd square. - Henry Bottomley, May 16 2005

Multiplicative with a(p^e) = Sum_{k=0..e} p^max(k, e-k),  (cf. A107661). - Mitch Harris, May 18 2005

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

L. Tóth, Multiplicative arithmetic functions of several variables: a survey, arXiv:1310.7053 [math.NT], 2013-2014.

FORMULA

Dirichlet g.f. (zeta(s-1))^2*zeta(2s-1)/zeta(2s-2). - R. J. Mathar, Feb 11 2011

Sum_{k=1..n} a(k) ~ 3*Zeta(3)*n^2 / (2*Pi^2) * (2*log(n) - 24*Zeta'(2)/Pi^2 - 1 + 4*gamma + 4*Zeta'(3)/Zeta(3)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 01 2019

EXAMPLE

a(8) = lcm(1,8) + lcm(2,4) + lcm(4,2) + lcm(8,1) = 8 + 4 + 4 + 8 = 24.

MATHEMATICA

Table[DivisorSum[n, LCM[#, n/#] &], {n, 59}] (* Michael De Vlieger, Dec 11 2017 *)

PROG

(PARI) a(n) = sumdiv(n, d, lcm(d, n/d)); \\ Michel Marcus, May 19 2014

CROSSREFS

Cf. A055155.

Sequence in context: A088682 A102415 A117003 * A171615 A141780 A185002

Adjacent sequences:  A057667 A057668 A057669 * A057671 A057672 A057673

KEYWORD

nonn,mult

AUTHOR

Leroy Quet, Oct 18 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 11 15:41 EST 2019. Contains 329017 sequences. (Running on oeis4.)