login
A057622
Initial prime in first sequence of n consecutive primes congruent to 5 modulo 6.
11
5, 23, 47, 251, 1889, 7793, 43451, 243161, 726893, 759821, 1820111, 1820111, 10141499, 19725473, 19725473, 136209239, 400414121, 400414121, 489144599, 489144599, 766319189, 766319189, 21549657539, 21549657539, 21549657539, 140432294381, 140432294381, 437339303279, 1871100711071, 3258583681877
OFFSET
1,1
COMMENTS
Same as A057621 except for a(1). See A057620 for primes congruent to 1 (mod 6). See A055626 for the variant "exactly n", which is an upper bound, cf. formula. - M. F. Hasler, Sep 03 2016
The sequence is infinite, by Shiu's theorem. - Jonathan Sondow, Jun 22 2017
REFERENCES
R. K. Guy, "Unsolved Problems in Number Theory", A4
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..35 (terms < 4*10^14)
D. K. L. Shiu, Strings of Congruent Primes, J. Lond. Math. Soc. 61 (2) (2000) 359-373 [MR1760689]
FORMULA
a(n) = A000040(A247967(n)). a(n) = min { A055626(k); k >= n }. - M. F. Hasler, Sep 03 2016
EXAMPLE
a(12) = 1820111 because this number is the first in a sequence of 12 consecutive primes all of the form 6n + 5.
MATHEMATICA
p = 0; Do[a = Table[-1, {n}]; k = Max[1, p]; While[Union@ a != {5}, k = NextPrime@ k; a = Take[AppendTo[a, Mod[k, 6]], -n]]; p = NestList[NextPrime[#, -1] &, k, n]; Print[p[[-2]]]; p = p[[-1]], {n, 18}] (* Robert G. Wilson v, updated by Michael De Vlieger, Sep 03 2016 *)
Table[k = 1; While[Total@ Boole@ Map[Mod[#, 6] == 5 &, NestList[NextPrime, Prime@ k, n - 1]] != n, k++]; Prime@ k, {n, 12}] (* Michael De Vlieger, Sep 03 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 09 2000
EXTENSIONS
More terms from Don Reble, Nov 16 2003
More terms from Jens Kruse Andersen, May 30 2006
Three lines of data (derived from J.K.Andersen's web page) completed by M. F. Hasler, Sep 02 2016
STATUS
approved