This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057611 Let m = 3, 5, 7, ..., k = 0, 1, 2, 3, ..., z = (m+1)/2, 0 < j <= m. Let n_j be a prime number. Sequence gives T(m,k) = Table[m,k] = number of solutions to Sum_{d=1,2, ..., (z+k)}(n_j)_d = Sum_{d=1,2, ..., (z-k-1)}(n_j)_d = primorial number (A002110). 0
 1, 1, 0, 2, 0, 0, 5, 0, 0, 0, 8, 5, 0, 0, 0, 19, 20, 0, 0, 0, 0, 66, 55, 1, 0, 0, 0, 0, 280, 48, 64, 0, 0, 0, 0, 0, 645, 584, 35, 22, 0, 0, 0, 0, 0, 2780, 842, 705, 10, 4, 0, 0, 0, 0, 0, 9163, 2754, 2867, 30, 46, 0, 0, 0, 0, 0, 0, 29869, 10771, 9904, 311, 230, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA A022894(m) = Sum_{k=0, 1, 2, ..} [Number of solutions to Sum_{d=1, 2, ..., (z+k)}(n_j)_d = Sum_{ d=1, 2, ..., (z-k-1)}(n_j)_d] EXAMPLE {1}; {1,0}; {2,0,0}; {5,0,0,0}; {8,5,0,0,0}; {19,20,0,0,0,0}; ..... ->-> 3+2=5 {m=3, Table[3,0]=1}; 2+7+5=3+11 {m=5, Table[5,0]=1, Table[5,1]=0}; 17+2+7+3=13+5+11 and 2+11+3+13=17+7+5 {m=7, Table[7,0]=2, Table[7,1]=0, Table[7,2]=0}. CROSSREFS Cf. A022894, A002110. Sequence in context: A169774 A302689 A289088 * A259701 A147843 A094597 Adjacent sequences:  A057608 A057609 A057610 * A057612 A057613 A057614 KEYWORD nonn,tabl AUTHOR Naohiro Nomoto, Nov 27 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 17:25 EDT 2019. Contains 321422 sequences. (Running on oeis4.)