This site is supported by donations to The OEIS Foundation.



Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057608 Maximal size of binary code of length n that corrects one transposition (end-around transposition not included). 3
1, 2, 3, 4, 8, 12, 20, 38, 63, 110, 196, 352 (list; graph; refs; listen; history; text; internal format)



S. Butenko, P. Pardalos, I. Sergienko, V. P. Shylo and P. Stetsyuk, Estimating the size of correcting codes using extremal graph problems, Optimization, 227-243, Springer Optim. Appl., 32, Springer, New York, 2009.

N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.


Table of n, a(n) for n=0..11.

José Manuel Gómez Soto, Jesús Leaños, Luis Manuel Ríos-Castro, Luis Manuel Rivera, On an error-correcting code problem, arXiv:1711.03682 [math.CO], 2017.

N. J. A. Sloane, On single-deletion-correcting codes

N. J. A. Sloane, Challenge Problems: Independent Sets in Graphs


Cf. A057657, A000016, A057591, A010101. Row sums of A085684.

Sequence in context: A222125 A222126 A060200 * A060984 A226947 A272615

Adjacent sequences:  A057605 A057606 A057607 * A057609 A057610 A057611




N. J. A. Sloane, Oct 09 2000


a(9) = 110 from Butenko et al., Nov 28 2001 (see reference).

a(9) = 110 also from Ketan Narendra Patel (knpatel(AT)eecs.umich.edu), Apr 29 2002. Confirmed by N. J. A. Sloane, Jul 07 2003

a(10) >= 196 and a(11) >= 352 from Butenko et al., Nov 28 2001 (see reference).

a(10) = 196 found by N. J. A. Sloane, Jul 17 2003

a(11) = 352 proved by Brian Borchers (borchers(AT)nmt.edu), Oct 16 2009



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 15:53 EST 2019. Contains 319195 sequences. (Running on oeis4.)