login
A057558
Lexicographic ordering of MxMxMxM, where M={0,1,2,...}.
3
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1, 2, 0, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 2, 1, 0, 0, 3, 0, 0, 0
OFFSET
1,24
LINKS
EXAMPLE
Flatten the list of ordered lattice points, (0,0,0,0) < (0,0,0,1) < (0,0,1,0) < ... as 0,0,0,0, 0,0,0,1, 0,0,1,0, ...
MATHEMATICA
lexicographicLattice[{dim_, maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1, {dim}], 1]&, maxHeight], 1]; Flatten@lexicographicLattice[{4, 4}]-1
(* by Peter J. C. Moses, Feb 10 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 07 2000
EXTENSIONS
Extended by Clark Kimberling, Feb 10 2011
STATUS
approved