login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057554 Lexicographic ordering of MxM, where M={0,1,2,...}. 3
0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 0, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 0, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 0, 7, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 0, 0, 8, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 0, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 0, 0, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

A057555 gives the lexicographic ordering of N x N, where N={1,2,3,...}.

LINKS

Table of n, a(n) for n=1..156.

EXAMPLE

Flatten the ordered lattice points: (0,0) < (0,1) < (1,0) < (0,2) < (1,1) < ... as 0,0, 0,1, 1,0, 0,2, 1,1, ...

MATHEMATICA

lexicographicLattice[{dim_, maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1, {dim}], 1]&, maxHeight], 1]; Flatten@lexicographicLattice[{2, 12}]-1

(* by Peter J. C. Moses, Feb 10 2011 *)

CROSSREFS

Cf. A057555, A057556, A057557, A057558, A057559.

Sequence in context: A132401 A104273 A051778 * A060575 A236074 A099916

Adjacent sequences:  A057551 A057552 A057553 * A057555 A057556 A057557

KEYWORD

nonn

AUTHOR

Clark Kimberling, Sep 07 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 09:38 EST 2017. Contains 295115 sequences.