login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057534 a(n+1) = a(n)/2 if 2|a(n), a(n)/3 if 3|a(n), a(n)/5 if 5|a(n), a(n)/7 if 7|a(n), a(n)/11 if 11|a(n), a(n)/13 if 13|a(n), else 17*a(n)+1. 14
61, 1038, 519, 173, 2942, 1471, 25008, 12504, 6252, 3126, 1563, 521, 8858, 4429, 75294, 37647, 12549, 4183, 71112, 35556, 17778, 8889, 2963, 50372, 25186, 12593, 1799, 257, 4370, 2185, 437, 7430, 3715, 743, 12632, 6316, 3158, 1579, 26844, 13422 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the `17x+1' map. The `Px+1 map': if x is divisible by any prime < P then divide out these primes one at a time starting with the smallest; otherwise multiply x by P and add 1.

REFERENCES

Murad A. AlDamen, Smarandache Notion Journal, "Murad iterating function" [details?].

Murad A. AlDamen, Murad iterating function, Journal of University of Jerash, 2001, to appear.

LINKS

Table of n, a(n) for n=0..39.

Eric Weisstein's World of Mathematics, Collatz problem

MAPLE

with(numtheory): a := proc(n) option remember: local k; if n=0 then RETURN(61); fi: for k from 1 to 6 do if a(n-1) mod ithprime(k) = 0 then RETURN(a(n-1)/ithprime(k)); fi: od: RETURN(17*a(n-1)+1) end:

CROSSREFS

Cf. A057446, A057216 (short version), A057522, A057614.

Sequence in context: A317283 A264306 A138790 * A152868 A218112 A154428

Adjacent sequences:  A057531 A057532 A057533 * A057535 A057536 A057537

KEYWORD

nonn,easy

AUTHOR

Murad A. AlDamen (Divisibility(AT)yahoo.com), Oct 17 2000

EXTENSIONS

More terms from James A. Sellers and Larry Reeves (larryr(AT)acm.org), Oct 18 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 13:09 EST 2019. Contains 319271 sequences. (Running on oeis4.)