This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057514 Number of peaks in mountain ranges encoded by A014486, number of leaves in the corresponding rooted plane trees. (the root node is never counted as a leaf). 11
 0, 1, 2, 1, 3, 2, 2, 2, 1, 4, 3, 3, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 1, 5, 4, 4, 4, 3, 4, 3, 4, 4, 3, 3, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 4, 4, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2, 1, 6, 5, 5, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 3, 5, 4, 4, 4, 3, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums from A014137[i]th to A014137[i+1]-1:th term of this sequence produce central binomial coefficients C(2n+1,n+1) (see comment at A001700): [seq(add(A057514[j],j=CatPsum(i)..(CatPsum(i+1)-1)),i=0..upto_n)]; LINKS Indranil Ghosh, Table of n, a(n) for n = 0..3485 A. Karttunen, Gatomorphisms and other excursions ... (Includes Scheme program) FORMULA a(n) = wt(GrayCode(A014486[n]))/2 = A000120[A003188[A014486[n]]]/2 = A005811[A014486[n]]/2 MAPLE Cat := n -> binomial(2*n, n)/(n+1); CatPsum := proc(n) option remember; if(0 = n) then RETURN(1); else RETURN(Cat(n)+CatPsum(n-1)); fi; end; PROG (Python) def a005811(n): return bin(n^(n>>1))[2:].count("1") def ok(n): # This function after Peter Luschny     B=bin(n)[2:] if n!=0 else 0     s=0     for b in B:         s+=1 if b=="1" else -1         if s<0: return 0     return s==0 def A(n): return [0] + [i for i in xrange(1, n + 1) if ok(i)] l=A(200000) print [a005811(l[i])/2 for i in xrange(len(l))] # Indranil Ghosh, May 21 2017 CROSSREFS Cf. A057515. For Maple procedure GrayCode see A055095. a(n)-1 gives the number of zeros in A071153(n) (for n>=1). Sequence in context: A262324 A286364 A084216 * A273568 A140720 A033559 Adjacent sequences:  A057511 A057512 A057513 * A057515 A057516 A057517 KEYWORD nonn AUTHOR Antti Karttunen, Sep 03 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 19:58 EST 2019. Contains 319251 sequences. (Running on oeis4.)