login
A057217
a(n) = smallest positive integer k such that 1+n*k! is a prime.
8
1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 4, 2, 2, 1, 2, 4, 3, 2, 3, 1, 2, 1, 7, 3, 2, 6, 2, 1, 3, 3, 2, 1, 2, 1, 4, 2, 3, 1, 3, 2, 5, 2, 2, 1, 2, 2, 3, 2, 5, 1, 11, 1, 3, 3, 2, 5, 2, 1, 4, 2, 2, 1, 5, 1, 3, 2, 2, 3, 3, 1, 14, 5, 2, 1, 2, 4, 7, 2, 3, 1, 2, 2, 3, 8, 5, 7, 2, 1, 11, 2, 2, 1, 3, 1, 3
OFFSET
1,3
FORMULA
a(n) = Min{k|1+nk! is prime}.
EXAMPLE
n=7, 1+7.k!={8,15,43,169,...}. The smallest k which gives prime is 3 and the prime so obtained is 43.
n=267, the smallest k! is 31! for which 1+267*k! is prime and the prime so obtained is 65782709233423382541804503040000001.
MATHEMATICA
spi[n_]:=Module[{k=1}, While[!PrimeQ[1+k!*n], k++]; k]; Array[spi, 110] (* Harvey P. Dale, May 01 2016 *)
PROG
(PARI) a(n) = k = 1; while (!isprime(1+n*k!), k++); k; \\ Michel Marcus, Feb 20 2016
CROSSREFS
Sequence in context: A326975 A204893 A251717 * A193330 A147810 A305302
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 27 2000
EXTENSIONS
Offset corrected by Michel Marcus, Feb 20 2016
STATUS
approved