login
Primes congruent to 3 modulo 4 generated recursively: a(n) = Min_{p, prime; p mod 4 = 3; p|4Q-1}, where Q is the product of all previous terms in the sequence. The initial term is 3.
1

%I #16 Dec 12 2021 20:00:33

%S 3,11,131,17291,298995971,8779,594359,59,151,983,19,

%T 38851089348584904271503421339,

%U 2359886893253830912337243172544609142020402559023,823818731,2287,7,9680188101680097499940803368598534875039120224550520256994576755856639426217960921548886589841784188388581120523,163,83,1471,34211,2350509754734287,23567

%N Primes congruent to 3 modulo 4 generated recursively: a(n) = Min_{p, prime; p mod 4 = 3; p|4Q-1}, where Q is the product of all previous terms in the sequence. The initial term is 3.

%D P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

%e a(4) = 17291 = 4*4322 + 3 is the smallest prime divisor congruent to 3 (mod 4) of Q = 3*11*131 - 1 = 17291.

%t a={3}; q=1;

%t For[n=2,n<=7,n++,

%t q=q*Last[a];

%t AppendTo[a,Min[Select[FactorInteger[4*q-1][[All,1]],Mod[#,4]==3&]]];

%t ];

%t a (* _Robert Price_, Jul 18 2015 *)

%Y Cf. A000945, A000946, A005265, A005266, A051308-A051335, A002476, A057204-A057208.

%K nonn

%O 1,1

%A _Labos Elemer_, Oct 09 2000

%E More terms from _Phil Carmody_, Sep 18 2005

%E Terms corrected and extended by _Sean A. Irvine_, Oct 23 2014