%I
%S 4,13,35,52,95,119,169,676,11596,57577,159484,276773
%N Numbers n such that n divides s(n1), where s(1) = 1, s(n) = s(n1) + (n+1)*3^n.
%C No other terms below 300000.  _Vaclav Kotesovec_, May 05 2018
%C s(n) = 1, 28, 136, 541, 1999, 7102, 24598,... 4*s(n) = 3^(n+1)*(2n+1)23, with g.f. x*(121*x+45*x^2) / ( (x1)*(1+3*x)^2 ).  _R. J. Mathar_, May 05 2018
%t seq = RecurrenceTable[{s[n] == s[n  1] + (n + 1)*3^n, s[1] == 1}, s, {n, 1, 20000}]; Select[Range[1, Length[seq]], Divisible[seq[[#  1]], #] &] (* _Vaclav Kotesovec_, May 05 2018 *)
%K nonn,more
%O 1,1
%A _Robert G. Wilson v_, Sep 13 2000
%E Minor edits by _Altug Alkan_, May 05 2018
%E a(10)a(12) from _Vaclav Kotesovec_, May 05 2018
