

A057159


Numbers n such that n divides s(n1), where s(1) = 1, s(n) = s(n1) + (n+1)*3^n.


1



4, 13, 35, 52, 95, 119, 169, 676, 11596, 57577, 159484, 276773
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

No other terms below 300000.  Vaclav Kotesovec, May 05 2018
s(n) = 1, 28, 136, 541, 1999, 7102, 24598,... 4*s(n) = 3^(n+1)*(2n+1)23, with g.f. x*(121*x+45*x^2) / ( (x1)*(1+3*x)^2 ).  R. J. Mathar, May 05 2018


LINKS

Table of n, a(n) for n=1..12.


MATHEMATICA

seq = RecurrenceTable[{s[n] == s[n  1] + (n + 1)*3^n, s[1] == 1}, s, {n, 1, 20000}]; Select[Range[1, Length[seq]], Divisible[seq[[#  1]], #] &] (* Vaclav Kotesovec, May 05 2018 *)


CROSSREFS

Sequence in context: A127981 A296303 A089453 * A189588 A266357 A095941
Adjacent sequences: A057156 A057157 A057158 * A057160 A057161 A057162


KEYWORD

nonn,more


AUTHOR

Robert G. Wilson v, Sep 13 2000


EXTENSIONS

Minor edits by Altug Alkan, May 05 2018
a(10)a(12) from Vaclav Kotesovec, May 05 2018


STATUS

approved



