|
|
A057148
|
|
Palindromes only using 0 and 1 (i.e., base 2 palindromes).
|
|
24
|
|
|
0, 1, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 11111, 100001, 101101, 110011, 111111, 1000001, 1001001, 1010101, 1011101, 1100011, 1101011, 1110111, 1111111, 10000001, 10011001, 10100101, 10111101, 11000011, 11011011
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
If one takes a number from this sequence that has fewer than 10 digits and squares it, then the result will also be a palindrome. - Dmitry Kamenetsky, Oct 21 2008
|
|
LINKS
|
Ray Chandler, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
(* get NextPalindrome from A029965 *)
Select[ NestList[ NextPalindrome, 0, 11110], Max(AT) IntegerDigits(AT)# < 2 &] (* Robert G. Wilson v *)
Select[FromDigits/@Tuples[{0, 1}, 8], IntegerDigits[#]==Reverse[ IntegerDigits[ #]]&] (* Harvey P. Dale, Apr 20 2015 *)
|
|
PROG
|
(Sage)
[int(n.binary()) for n in (0..220) if Word(n.digits(2)).is_palindrome()] # Peter Luschny, Sep 13 2018
|
|
CROSSREFS
|
Cf. A006995 for sequence translated from binary to decimal. A016116 for number of terms of sequence with n+1 binary digits (0 taken to have no digits).
Cf. A002113, A118594, A118595, A118596, A118597, A118598, A118599, A118600.
Sequence in context: A193415 A263609 A264406 * A076289 A247647 A240602
Adjacent sequences: A057145 A057146 A057147 * A057149 A057150 A057151
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Henry Bottomley, Aug 14 2000
|
|
STATUS
|
approved
|
|
|
|