This site is supported by donations to The OEIS Foundation.



Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057083 Scaled Chebyshev U-polynomials evaluated at sqrt(3)/2; expansion of 1/(1-3*x+3*x^2). 33


%S 1,3,6,9,9,0,-27,-81,-162,-243,-243,0,729,2187,4374,6561,6561,0,

%T -19683,-59049,-118098,-177147,-177147,0,531441,1594323,3188646,

%U 4782969,4782969,0,-14348907,-43046721,-86093442,-129140163,-129140163,0

%N Scaled Chebyshev U-polynomials evaluated at sqrt(3)/2; expansion of 1/(1-3*x+3*x^2).

%C With different sign pattern, see A000748.

%C a(n)=6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+6a(n-5). - _Paul Curtz_, Nov 21 2007

%C Conjecture: Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1-M)^n = A057681(n)-A057682(n)*M+z(n)*M^2, where z(0)=z(1)=0 and, apparently, z(n+2)=a(n). - Stanislav Sykora, Jun 10 2012

%D A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=3, q=-3.

%D W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eqs. (38) and (45),lhs, m=3.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H Kruchinin Vladimir Victorovich, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565

%F a(n)=S(n, sqrt(3))*(sqrt(3))^n with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310.

%F a(2*n)= A057078(n)*3^n; a(2*n+1)= A010892(n)*3^(n+1).

%F G.f.: 1/(1-3*x+3*x^2).

%F Binomial transform of A057079. a(n)=sum{k=0..n, 2*C(n, k)*cos((k-1)pi/3) }. - _Paul Barry_, Aug 19 2003

%F For n > 5, a(n) = -27*a(n-6) - _Gerald McGarvey_, Apr 21 2005

%F a(n)=Sum_{k, 0<=k<=n}A109466(n,k)*3^k. [From _Philippe Deléham_, Nov 12 2008]

%F a(n) = sum(k=1..n, binomial(k,n-k) * 3^(k)*(-1)^(n-k)) for n>0; a(0)=1. [From _Vladimir Kruchinin_, Feb 07 2011]

%F By the conjecture: Start with x(0)=1,y(0)=0,z(0)=0 and set x(n+1)=x(n)-z(n), y(n+1)=y(n)-x(n),z(n+1)=z(n)-y(n). Then a(n)=z(n+2). This recurrence indeed ends up in a repetitive cycle of length 6 and multiplicative factor -27, confirming G.McGarvey's observation. - Stanislav Sykora, Jun 10 2012

%F G.f.: Q(0) where Q(k) = 1 + k*(3*x+1) + 9*x - 3*x*(k+1)*(k+4)/Q(k+1) ; (continued fraction). - _Sergei N. Gladkovskii_, Mar 15 2013

%F G.f.: G(0)/(2-3*x), where G(k)= 1 + 1/(1 - x*(k+3)/(x*(k+4) + 2/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 16 2013

%t Join[{a=1,b=3},Table[c=3*b-3*a;a=b;b=c,{n,100}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 17 2011*)

%o (Sage) [lucas_number1(n,3,3) for n in xrange(1, 37)]# [From _Zerinvary Lajos_, Apr 23 2009]

%Y A049310, A057078, A010892, A000748.

%Y Cf. A129339, A057681, A057682.

%K easy,sign

%O 0,2

%A _Wolfdieter Lang_, Aug 11 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 02:13 EST 2014. Contains 252240 sequences.